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ABSTRACT

This paper deals with the development and analysis of well-posed models and compu-

tational algorithms for control of a class of partial differential equations that describe the

motions of thermo-viscoelastic structures. We first present an abstract "state space" frame-

work and a general well-posedness result that can be applied to a large class of thermo-elastic

and thermo-viscoelastic models. This state space framework is used in the development of

a computational scheme to be used in the solution of an LQR control problem. A detailed

convergence proof is provided for the viscoelastic model and several numerical results are

presented to illustrate the theory and to analyze problems for which the theory is incomplete.
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1. Introduction. During the past few years considerable attention has been de-

voted to the development of smart materials and structures (see [B]). One approach

to this class of problems is to use shape memory alloys as actuators in active control

designs. These alloys are best described by thermo-mechanical models consisting of

coupled (and nonlinear) hyperbolic and parabolic partial differential equations. The

development of computational algorithms for designing controllers for such systems is

an immensely complex problem and the subject of several ongoing research projects.

In addition to the obvious difficulties related to the nonlinearities, the basic thermo-

elastic coupling often gives rise to nonstandard mathematical models and leads to

several problems in developing computational algorithms for control. Therefore, the

computational methods for controlling a linear thermo-elastic system may be viewed

as a first step toward the ultimate nonlinear problem. With this motivation in mind,

we consider the problem of controlling a class of coupled partial differential equations

that describe the linearized motions of a thermo-mechanical structure. The basic

approach is to combine approximation theory with state space modelling to develop

convergent computational algorithms for LQR control designs.

In this paper we consider the questions of well-posedness and convergence of ap-

proximation schemes for a class of abstract linear systems of the form

_(t) = Az(t) + Uu(t), z(O) = Zo (1.1)

on a Hilbert space Z. The main concern of this paper is with a general class of partial

functional differential equations (PFDEs) arising in the modeling of viscoelastic and



thermo-viscoelastic systems,for example (see [BCLM], [BMC], [MH]), coupled

equationsof the form

/0 0 ]_,-g-_y(_,z)= _ , y(t,x) + ,g(_)Ny(t + ,,x)as

-.y° o(t,x) + b(:@,(t), (1.2)

O 0 2 0 2
-N O(t ,x ) = ,_-_z_O(t , :_) - _Oo-o--_ y (t , x ) (1.3)

where y represents displacement and 0 is the deviation from the reference temperature

00. Equations of viscoelasticity (e.g., (1.2) with 7 = 0) have a special structure which

has been used by Fabiano and Ito [FI] to formulate a general well-posedness theorem

and convergence results. Observe that (1.2) with 3' = 0 can be written as

_'-5_y(t'z) - oz_ Ty(t,x) + e(s)y(t + s,x)d_ + b(x)_(t),
7"

or, in abstract form, as

[ /0 ][] + _4 ry + g(s)y(t + s)ds = f(t),
1"

(1.4)

(1.5)

where Jl is a positive definite, self-adjoint, closed linear operator on a Hilbert space

Y. In [FI] Fabiano and Ito consider equations of this form with singular kernels

(i.e., g E Ll(-r, 0)) and establish well-posedness when the state space is taken to be

:D(A 1/2) x Y x L_(-r, 0;7)(A1(_)). In this paper, we also consider equations of the

form (1.5), but the approach we take also applies to the thermo-viscoelastic equations

(1.2) - (1.3) which cannot be written in the form of (1.5).

In Section 2 we develop an abstract framework and a generalized well-posedness

theorem which we apply to the thermo-viscoelastic system (1.2) - (1.3) with zero
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boundary conditions and to the general viscoelasticsystemgiven by equation (1.5).

Our approachallowsa singular kernel, and it also hasthe advantagethat it doesnot

require explicit knowledgeof the domain of A 1/_ in order to write down the state

space. This property can be useful in applications where A 1/2 is not a differential

operator. \Ve also remark that our general framework can be applied to certain finite

delay systems similar in form to the infinite delay systems considered by Miller and

Desch in [MD]. Miller and Desch prove well-posedness for a class of equations in

which the kernel is completely monotonic.

Approximation of such systems generally consists of two steps: first approximate

the spatial variable (e.g., by means of splines) to reduce the system to a hereditary

differential system on R '_, then approximate the "history" or "memory" term (i.e.,

the integral term in (1.5)). In this paper we will use a variation introduced by Fabiano

and Ito ([FI]) of the averaging scheme considered by Banks and Burns ([BB]) for

the second stage. The idea of the "AVE" scheme is essentially to approximate the

kernel g(s) by a step function: partition I-r, 0] into M subintervals and take the

integral average in each subinterval. Fabiano and Ito show that the approximation

scheme converges for an L 1 kernel using a uniform partition of I-r, 0], but they give

numerical results which indicate that a different partition using a finer mesh near the

singularity at zero yields much faster convergence. In Section 3 we modify the proof

given by Fabiano and Ito for singular kernels and a uniform mesh to include singular

kernels and the non-uniform mesh.
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Although we prove convergence in this paper only for the abstract viscoelastic

system, the proof we give can be modified to include the thermo-viscoelastic model.

In Section 4 we give some numerical results comparing the viscoelastic and thermo-

viscoelastic models.

We will use the following notation. For a function g C Ll(a,b;Z), we denote

the set {f • L2(a,b;Z) l_g(s)lIf(s)iizds < oe}. We denote by theby L_(a,b;Z)

symbol HI(a, b; Z) the set of all H 1 functions which vanish at the left end-point of

the interval; i.e., H]_(a, b; Z) = { f • tIl(a, b; Z) I I(a) = 0}. Similarly, H_(a, b; Z) =

{I • Hl(a,b;Z) lf(b) = 0}. For a function x: [-r,a) _ X, r,o > 0, the symbol xt

for t • [0, a) represents the function x,: [-r, 0] _ X defined by xt(s) = x(t+s). If A

is the infinitesimal generator of a Co semigroup T(.) on a Hilbert space Z satisfying

IIT(t)ltz _< Me _', then we write A • G(M,_). Finally, z,_ s--_z means that zn

converges strongly to z.

2. Well-Posedness. A standard technique for establishing well-posedness of a

system governed by a PFDE is to cast the problem in the form of (1.1) and show

that .A generates a Co semigroup on Z, for example, by means of the Lumer-Phillips

theorem (see [P]). We will use the following version of this theorem:

THEOREM 2.1. Let A be a closed densely defined linear operator on a Hilbert space

H. If there exists/3 • R such that (Ax, x} <_ _(z,x) for all x • D(A), and T¢(AoI- A)

is dense in H for some Ao > 8, then A is the intTnitesimal generator of a Co semigroup
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T(t) on H satisfying ]]T(t)I ] _< e_'.

2.1. A General Theorem on Well-Posedness. Suppose that X, Y, 0 and 1¥

are Hilbert spaces, and set Zo = X × Y × 0 x IV'. Let S be asubspaceofY, and

suppose we have the following linear operators:

Ao : D(Ao) C_ Y ---* F,

G1 : D(G1) g 0 ---, Y,

Ga : D(G3) (:: (9 --* O,

D : D(D) c_ IV --+ W,

C1 : D(C1) c_ W --+ Y,

i:X_FV, j:S_X.

Define A, C and G by A = AoA1, C = AoC1 and G = AoG1, and define Fe by

I }7:)(Fo) = E X x 6) x I¥ x E D(A1),O E D(GI),w E D(C_),
Alz + GIO + Clw E D(Ao)

Fo = Ao(Alx + GIO + Clw).

Define Ao by

{(;)79(Ao) = e zo

W

x JYx )G2y + GaO
ijg + Dw

y e s n z_(a2),o e Z)(G3),]

e Z)(D), e Z)(Fo) '

Finally, suppose that j is injective and, for A E p(D) n p(Ga), define La : D(L:_) C_
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X--_ Y by

D(L_) = {x 6 7_(j) I (x,),j-'x,(AI-G3)-aG_Aj-ax,(M - D)-'iAx) r E D(Ao)},

Lax = A2j-lx- Fo (AI- Ga)-IG2Aj-lx .

(M - D)-liAz

We are now ready to state the main result of this chapter.

THEOREM 2.2. Suppose

(1) i and j-1 are continuous,

(2) D(A) is dense in X, ,_qC 19(G_) and S is dense in Y, _)(G) rh Z)(G3) is dense in

O, and D(C) N D(D) is dense in W,

(3) j(s) is closedin X,

(4) Fo, G3 and D are closed,

(5) fo_y c s, IlC_yllo_<z IlJy[Jxfor some k > O,

(6) there e×ists fl _ R such that (Aoz, Z)z_ <_fl <z,Z)z° for all z _ 19(Ao),

(7) there exists ao > _, _o e ;(D)ne(C3), such that 7_(Lao) is dense in Y, and

(8) (AoI- D)[D(C)a19(D)] is dense in |.V, and (AoI-Ga)[D(G)AD(Ga)] is dense

in @.

Then .,40 is the infinitesimal generator of a Co semigroup So(t) on Zo satisfying

IlSo(t)tl _<d'.

PROOF: Set 19 = 19(A)xSx(D(a)r119(G3))x(19(C)n19(D)). Then 19 _C_D(.Ao) and

Y" 19( Ao ), and19 is dense in Zo, so :D(.Ao) is dense in Zo. For n = 1,2,...,let 0_ 6
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Yn Y'_ ¢" _ as n _ e_. Then
suppose 0,_ --* and Ao On = %

Wn W Wn hn

y, e S and jy,_ = _o= _ _o. Since j(S) is closed, there exists _ E S such that j_ = c2.

But j-' is bounded, so [[_- y[[ _< I[J-'l[" [IV - _nll + I[y, - yII _ 0 as n ---, _.

Therefore, y = _; i.e., y E S and jy = 90. Now, 0_ E D(Fe), 0n --+ ,
ton tOn

(xn)and Fo 0,_
Wn

Fo 0 =¢.
l/)

have ijyn + Dw,_

(x)= ¢,_ + ¢ as n + ¢xz. Since Fo is closed, 0 E D(Fo) and
W

Since jy,_ _ jy and i is continuous, we have ijyn ---* ijy. We also

---, h. Thus, Dwn _ h-ijy. But D is closed, sow E D(D) and

Dw = h-ijy which implies that ijy+Dw = h. Next, 0n _ 0, 0,_ E D(Ga) and

C2yn + aaO,_ = % --+ "7. By (5), IIG2(y,,- y)llo -<k llJ(y- - y)llx = k IlJY,_- Jyllx --'

0, so G2y,_ "-+ G2y which implies that GaO,_ _ 7 - G2y. Since Ga is closed, 0 E 7)(Ga)

and GaO = "7- G2y, or 7 = G2y + GaO. Therefore, .,4o is closed. Finally, let

(c2,.XoX - JY)x + ¢, Xoy - Fe

Y

+ {7, (_oI - Ga)O - G,y)o + (h,()_oI - D)w - ijy)w = 0

for all E D(Ao). Let x E

to

T)(.Ao), so <_b,)_gj-lx- Fo (

all x E 9(Lxo), which implies ¢ = 0 by (7).

( x ).Xoj - l x
D(L_o). Then (,_oI- Ga)-aG2Aoj-_x E

(XoI - D)-li._oZ

(:_oI - Ca)-'a2_oj-'_ = (¢,Laoz)v = 0 for
()_oI - D)-_i,_oX y

If x = O, y = 0 and 0 = O, then



(h,(._oI- D)w)w = 0 for all w E 73(C) n D(D), and hence h = 0 by (8). Now for

x E 73(A), E 73(.,4o), so (%AoX)x = 0 for all x E 73(A). By (2) this implies

that qa = 0. Finally, for 0 E D(G) n73(Ga), e 73(.Ao), so (% (Ao/- Ca)O)o = 0

which implies that 3' = 0 by (S). Therefore, 7_(_oI - Me) is dense in Ze, and this

completes the proof. II

We wish to apply this theorem to thermo-viscoelastic systems (equations (1.2) -

(1.3)) and to the abstract viscoelastic system (equation (1.5)). Before we proceed

with any examples, however, we will make some general comments about the kernel

function g and the space W.

HYPOTttESIS 2.3. The function 9 satisfies the following conditions.

(1) g E L](-r, 0),

(2) g < 0 and g' < 0 o, [-T, 0), and

(3) _ --, + f°__g(s)ds> O.

Set g,,(s) = -_g(s), and suppose the space X is given. We will take W to be the

space L_(-r, 0; X) with inner product given by

/0(w_,w_),, = go(_)(w_(_),w_(_))_d_.
?-

Define the operator D by 73(D) = H_(-r, O; X), D = _0 The following lemma is08"

proved in [FI]. Since it is the crucial step which allows a singular kernel, we reproduce

its proof here.



LEMMA 2.4. The operator D is dissipative in IV.

PROOF: For w E/?(D),

/_ < ) ,/_ooo °w(_l,w(s) ds= g go(_)GIIw(_lll_,,d_.(Dw,_)w= go(s) _ x
7* r

Let e > 0 and consider

1 jf_-_ 0I, -- _ wo(_)N IIw(_)ll_.ds

1 1 /-_= _eo(-e)llw(-e)ll_ . - 1_go(-_)ll_(-_)ll_, 2 go(s) llw(s)ll_,as
T

1

_<5go(-_)IIw(-_)ll_. •

Since w(-e) = w(O)- J°Dw(s)ds -- -f o_,Dw(s)ds, by the Cauchy-Schwarz in-

equality

/otl_(-e)ll_- < , go(s) _g_(s) llD_(s)llxds

Note that g_(-e) , go(s) , go(s)

]_,_<5 go(s) IIDw(s)ll,_,as

for all e > 0. Therefore (Dw, U,}w = ]irrhl0 I, _< 0. I

For h E W, if w(s) = e s fo e__h(a)da, then w E 7)(D) and (I- D)w = h. Since D

is densely defined, D generates a Co semigroup of contractions on W by the Lumer-

Phillips Theorem. In particular, D is closed, and A E p(D) for all A > 0.

2.2. A Therlno-Viscoelastic System. We consider the system governed by equa-

tions (1.2) - (1.3) with boundary conditions given by y(t,O) = y(t, 1) = _)(t,O) =
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O(t, 1) = 0. If we set w(t, s, x) = V(t, x)- y(t + s, x) and use ga as defined above, then

we can rewrite equation (1.2) as

0 2 cr 0 [_----_y(t,z)+/iga(s)J-_w(t-b-_v(t, x) - -g&

Define the spaces X, Y and @ as follows:

's'x)ds - V-O(t'x)]o + l b(x)u(t)"

o_0 1 t iX=H_(0,1) with (z_,X2)x =o xlx2,

Y = L2(O, 1) with
1(Yl,Y2)y =G VlV2,

lfol@=L2(0,1) with (0_,02)0 =0o 0102.

Set Zo = X x Y x @ x W where W = L_(-r,O;X) is as above, and let S C Y be

given by S = H_(0, 1). Define the following operators:

7:)(Ao) = H'(0, 1), AoV = £V' e Y,
tY

D(A_) = X, AlX = x' E Y,

Z_(G,) = o, a,o = _2o e Y,
Ol

"D(G2) = H'(0, 1), G2y = -'_Oov'c= ®,

"D(G3) = HI(0, 1) N H2(0, 1),

v(c,) = w,

[ix](._)- _ _ w,

GzO = _0" E O,

/oC,w = 9a(s)w'(s)ds e Y,
r

j : HI = 5' _ X = HI is the identity operator.

With the above definitions, we have

D(A)=H_nH _, D(C)=L_(-r, 0;D(A)), D(G)=H'(0,1),

10



and the operator ,4o is given by

+4o =

W

/
V C Hi,O E H_ N H 2, [

• '- _o + f° go(_)_'(_)d_E H_ / '

y )-'_Ooy' + nO"
Ow

Y +-g7

We now verify the conditions of Theorem 2.2.

(1) Clearly i and j-i are continuous.

(2) Clearly D(A) is dense in X, S C_ "D(G2) and S is dense in Y, D(G) n D(G3) =

7;)(G3) is dense in O, and 7;)(C)nD(D)= H_(-r, 0;D(A))is dense in W.

(3) Since j(S) = X, j(S) is closed.

(4) We already know that D is closed. It is easy to see that Ga is densely de-

fined and dissipative, and for any _ C 0 there exists 0 E D(Gz) such that

(I-G3)O = _ (see [K, p. i471).

0,_ -+ , and Fo 0n = Cn -+ ¢.

tOn tOn

(+.- +jo  ow,
a dx a

Thus, G3 is closed. Let 0n
ton

Observe that Fo

e Z_(Fe),

(=n)On ---

Wn

t Ztx in X implies that x n -_

in Y, 0n -+ 0 in ® implies that 0n ---+ 0 in Y, and w,_ --+ w in IV implies that

f° go(s)w'(s)ds ---+ f° go(s)w'(s)ds in Y. Thus, x" - 20, + f°rg_(s)w'(s)ds
Ol

-* x' - 7-0 + fo r go(s)w'(s)ds in Y. Since Ao is closed, Fo is closed.
O_

(5) It is easy to check that Ila:vll+ = _°-2°IlJvll_,.Set k = _ > 0.
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(6) For z = (x,y,0, w)r _ Z)(Ae),

f'v, ,f' d(_2of °(Aez, z) = _ + a z' +
dx a ,

/o+ _o (--_Ooy' + ,_o")o +

= ,_(030,0) o + <D_,w) w <_0

g,(s)w'(s)ds) y

/o'go(_) y'w' + (Dw, W)w

since Ga and D are dissipative.

(7) We will take A0 = 1. Let x E D(La). If we set w(s) = (1 - eS)ix, then

(I- D)w = ix, so (I - D)-lix = (1 - eS)ix = (1 - eS)x. Note that

Lax = x -- ----
adz x'+-- -Ga)-_x'+ g_(s)(1-eS)xds

O_ r

X -- ----

a dx °{lXt "1- _ I - G3)-lx '
o¢

1E o 1 [ °r9 ]where a_ a f-_Tg(s)(1 e_)ds = 1= .... r+f (s)eA'ds > 0 for A >
Q, -

0. Since X __ Y, we can think of La as being defined on a subspace of Y.

Observe that D(L1) = {y E Hol(0,1)la,y'+ _@-(I-G3)-ay'C H a} is dense

in Y. Define the operators Ta and T2 as follows:

:D(Ta) = Ha(0, 1), T_y = y',

D(T2) = Ho_(0, 1), T2y = y'.

Note that 7'1 and T2 are adjoint to each other. With this notation we can write

La as follows:

Ll = I- C_-Ta[eqI + "720---2(I- G3)-l] T2"aa

12



Since G73 = G3, we have [(I - G3)-_]" = (I - Ga)-'. Thus,

[ , ]"L'_=I-a-T_ a,I+--3'20°( -G3) -1 T_*
O" I_'

that is, Lx is self-adjoint. Now, for 5' E D(L1),

fold (y, 7200 )-1 )y(LlY'Y)Y = (Y'Y)y--Or "_Z a, +--(I-Gaa Y'

/o'( = )= Ilyll _,v'+ 720°(I-G3)-'Y ' 9'

• 2 "_/_"o
= Ilyll_ + al llJyllx + m ((I- aa)-_y',y )r >-- IlYll_

Or

since I - Ga >_ 0 implies that (I - Ga) -1 :> 0. Thus, L1 is one-to-one. Hence

by Theorem 13.11 in [R], 7_(La) is dense in Y.

(8) Since D(Ga) C_ D(G), we have (I-Ga)[D(G)ND(Ga)] = (I-G3)D(G3) =

® from (4). Next, for h e D(C), if we set w(s) = eSf:e-°h(a)dcr, then

w E H_(-r, 0;D(A)) = D(C) fl D(D) and (I - D)w = h. Thus, D(C) C_

(I- D)[D(C)VID(D)], and D(C)is dense in W.

Since (1) - (8) hold, Ao generates a Co semigroup on Zo.

2.3. The Abstract Viscoelastic System. Next we wish to apply Theorem 2.2

to equation (1.5). Since the space 0 corresponds to the heat equation (1.3), we

first formulate a version of the theorem using only the spaces X, Y and W. Set

13



Z = X x Y" x IV, and define the operator F by

define .4 by

and define La by

"D(A) = 6 Z E 7:)(F) '

A ( iy =rx)W

ijy + Dw

73(L),) = {x E TC(j) l (x,.kj-_x,(,kI - D)-iiAx) r E 7:)(.4)},

( x )-L,xx = l_j-Xx- F (AI- D)-IiAx "

We have the following special case of Theorem 2.2.

THEOREM 2.5. Assume that all the hypotheses of Theorem 2.2 except those involving

the space 0 hold. In addition, assume that F is closed, that A satisfies the inequality

in (6), and that there exists _o > h, to E p(D), such that TC(L_0) is dense in Y. Then

.,4 generates a Co semigroup S(t) on Z satisfying IIs(011_<_*.

PROOF: Let ® = 10}, and define G1 = 0, G2 = 0 (with _(G2) = Y) and G3 =

and define .40 by T_(.4o) =

0. Define Z)(Fo) = E X x O x W E 79(F) Fo = F x
'W '

tO

,.4ozo = T.4T-lzo

14



/ x'_
where T : Z --, Zo

(i)(x)T-1 = Yw

(and T -1 : Ze _ Z is given by

). Note that if we define L_ as before, then :D(Lx) = D(_L:_)

and L_z = A_j-'z-ro (AZ-)-'iAx = _j-'z-f (hi- D)-'iax

It is easy to see that (1) - (8) of Theorem 2.2 are satisfied, so Ae generates a Co

semigroup Se(t') on Ze. Set S(t)z = T-1So(t)Tz. Then S(t)is a Co semigroup on

Z whose infinitesimal generator is A. |

We wish to apply Theorem 2.5 to the equation (1.5). If we set ff_(s) = y - Ys and

substitute into (1.5) we obtain an equation of the form

[/0 ][1 + a.4 y + 9_,(s)_(s)ds = f(t). (2.1)
r

We assume that .4 is a closed, densely defined, positive, self-adjoint, injective linear

operator. As we shall see in the example considered below, these assumptions are

easily verified in actual applications.

A standard technique (see e.g., [FI]) for reformulating (2.1) as an abstract Cauchy

problem is essentially to set X = 7::)(A1/_) where the inner product on X satisfies

= (A ) and to take the state space to be(z_,Z_)x Inx_, 54_nx2 r

Z = X x Y x L_(-r, O; X).

The approach we take here is similar but it allows more flexibility in the choice of

state space in that X is not necessarily contained in Y, but X will be in one-to-one

15



correspondencewith a subspaceof Y. We remark that explicit knowledge of the

square root of A is not required; it is only necessary to know that it exists.

With this discussion in mind, let S be a subspace of Y containing D(A), and let

( )whenevera(., .) be a symmetric bilinear form on S such that a(yl, Y2) = trAy1,/12 Y

Yl E D(A) and Y2 E S. Let X be a Hilbert space andj • S--* X abijectivelinear

operator such that j-x : X _ Y is continuous and (xa,X2}x = a(j-axl,j-_x2).

Define A: T_(A) C X ---, Y by

79(A)={z_X j-ix e _(A)}, A = -aAj -1

With W as defined above, set Z = X x Y x W. Then z(t) E Z satisfies

d

_z(t) = .Az(t) + col(O, f(t), 0),

where .A is given by

_(A) = c Z o
x + f___go(_)w(_)d__ V(A) '

..4 = A (x + f___ g_(s)w(s)ds) i

Jv + Dw

THEOREM 2.5. The operator ,4 generates a Co semigroup on Z.

(2.2)

PROOF: Let A, D and j be as above and consider the operators:

/_o
r

i: X ---, W given by [ix](s) = x.

16



In order to apply Theorem2.5, wemust showthat A can be factored as A = AoA1.

Since A : D(A) C Y" --_ Y is positive and self-adjoint, it has a positive square root

_)/2. Define Ao and A1 by

D(Ao) = "D(A.'/2), Ao = -a.74 I I2

D(A1) = {x E X [j-ix E D(.741/2)), ml = _1/2j-_.

Clearly, A = AoA1. Set C1 = A1C. We now verify the conditions of Theorem 2.2.

(1) Clearly i is continuous. By assumption, j-_ : 7Z(j) = X _ Y is continuous.

(2) Since S ::) T)(A) and .4 is densely defined, S is dense in Y. Suppose ._ 2_ D(A).

Then for all x E D(A),

0= (x,_}x =a(j-lx, j-l_)=a(74j- " >lx,3-1_ ,
Y

which implies that (74y,j-a_ly = 0 for all y E 7:)(A). But _, is self-adjoint and

one-to-one, so R(_.) is dense in Y ([R, Theorem 13.11]). Thus j-ly = 0 which

implies that _ = 0. Therefore, D(A) is dense in X. Finally, 7:)(C) M 7:)(D) =

D(AC) M D(D) = H_(-r, 0; D(A)) which is dense in W.

(3) Obvious since n(j)= X.

( x. ) _ Z)(F)(4) We already know that D is closed. To show that F is closed, let w,,

(-)• _ and F = y,_ -+ y as n _ oo. Setfor n = 1,2,.. ,let w, w ' w,,

_, = j-' (x,_ + f°__go(S)Wn(s)ds) and _ = j-' (x + f°__go(s)w(s)ds). Then

[ ]It_ - _tlr < IlJ-'l • II_.- go(,)d, Ilw. - Wllw --, o,



E D(_,) and -aA_ = y. But this implies that x + f°gQ(s)w(s)da E D(A)

[

and A (x + J_,g_,(s)w(s)ds) = y, so F is closed.

(5) Does not apply since 7_(G2) C ®.

(6) Let e Z_(A). Then, using the definition of {',')x,

=i°
r

by Lemma 2.4.

(7) Again we take Ao = 1. For x E D(L1), ( (

Zlz= j-'x- A (_ + f°go(s)(1-eS)xds)

where aa > 0 is as defined above. Define T by

x)j-ix E 7)(.A), and
1 - eS)z

= j-ix - crlAx

D(T)= {yE S[jyED(I,,)}, T=I+a, lo_74.

It is easy to see that D(A) = D(T) and 7_(T) = _-(L1). By the Cauchy-Schwarz

Inequality, for y E D(T), ][TyI[. ][yI[ > [(Ty, y}[ = [[y[[= + c_ac_ (74y, y} > IlylI =

which implies I]Tyl] >_ Iiyil, and so T is one-to-one. Also, T" = T so r_(T) is

dense in Y.

(8) The proof that (I - D)[D(C) n D(D)] is dense in W is the same as the proof

given in Section 2.1. I
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EXAMPLE. A viscoelastic shah with tip-mass.

Consider a viscoelastic shaft of length l fixed at one end and with a tip-mass at

the free end. The equation describing the motion of the shaft (see [BMC] where the

kernel g(s) is assumed to be in H 1) is

a -_-_ y ( t , x )02 -_zO [ Or_x Y ( t , x ) f _o 0 ]= + rg(_)_y(t+s,x)d_ +b(x)_l(t),

while the boundary conditions are given by

y(t,0) = 0,

(2.3)

(2.4)

= - r y(t,l) + Tg(s)-_xY(t + s,l)ds + u2(t). (2.5)

Here y is the angular displacement, a is the product of the density of the shaft with

its polar moment of inertia, T is the product of the shear modulus and the polar

moment of inertia, Im is the moment of inertia of the tip mass, and the delay r > 0

is assumed to be finite. Let Y = R x L2(0, l) with

Ilyl]_, = (_) = Imp,2 +a ¢2.

Then (2.3)- (2.5) can be written as

[ f ]_) + _4 Ty + g(i)ysds = f(t)

where f(t)= _b(x)u_(t) '

:
19



Clearly, D(A)is dense in Y. Let (_)E D(_,). Then _=

Thus, A. is positive and
2Iml + al 2

_-,_scon_o_o_s_._t (_')(and

II II>_,_,+o_ (_) >0.

1( 1< jib/r,so , o e- o-one
,(_)_ _(_._oo

_,¢1)' (¢5 foI /0l¢',(t)¢2(_) " ' "= - ¢1 ¢5 = ¢192

/o_ ((/(/)¢,(i)¢,2(l) -/,, "71 ft "72
= - V-'iV'2 = ¢1 ' ¢2 '

- () /o[f ]so A is symmetric. Let _ • Y. Define ¢(x) = a_(()d_ + I_ dt.

Then (¢(l))• "D(_.), and .-4(_b(1))= (_), so T_(_.)= Y. Therefore, by

and hence A. is closed.

"rl ), ('r_

Theorem 13.11 in [R], A" = A. Finally, T_(A-') = 7_(.4) = Y, so _-1 is closed,

Now let S : {(_)•Y]¢•HL(0 ,/), ¢(I)=7}, and

= a ¢1¢2 for E S. Then, S _DV(_,) and

o'(Yl,Y2) "-" <O_'_yl,y2>], whenever Yl • _D(A,), Y2 • S. Let X = H_(O,1)with

(x],X_}x = aflo ''xlx2, and definej : S ---* X by j(¢(¢/)) = ¢. Clearly jis a

bijective linear operator, and

(x],Z2}x = o x'_x'_ = a z l) z2(l) = a (j-_x],j-_z2).
_ X2

For x • X, [[j-lxH_ = Imx2(l) +afro x2 <- \ 2_, ] HzH_"" Thus, is continuous.
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Now, define Z = It_(O,l) x R x L2(O,l) x L_(-r,O;H_L(O,I)) with

ll( )(I/0 Jo/0= a (_,,)2 + Ira.r2 + +
r

,°,.)/o'
and define

EZ

_kc HL(O,I), ¢(/)= 7, ]

w e H_(-r'O;HL(O'I))' i(_,'(z) + f° g°(s)°w(_,x)as) e H'(0,;)

A
w¢ °r.

Ow

The operator .4 generates a Co semigroup on Z by Theorem 2.5.

3. Approxhnation. In this section we consider the problem of finding approximate

solutions to equations of the form (1.1). Let S(t) be the Co semigroup generated by

A. We construct a sequence (Z '_, P_, A") where Z _ is a finite dimensional subspace

of Z, P_ is the orthogonal projection of Z onto Z '_, and A _ generates a Co semigroup

S"(t) on Z _. We then show that Sn(t)P}z ---. S(t)z as n _ oo for all z E Z using

the following version of the Trotter-Kato theorem which follows from Theorem 4.2 in

[P, Chapter 3].

THEOREM 3.1. Let A C G(M, fl) be the infinitesimal generator of a Co semigroup

S(t) on a HiIbert space Z. For n = 1,2,..., let Z" be a finite dimensional subspace

of Z such that P" _ I as n _ oo where P" is the orthogonal projection of Z onto
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Z '_. Suppose

(HI) A n 6 G(M, 3) isthe infh,it,esima] generator of a Co semigroup S'(/) on Z n for

n = 1,2_..., and

(H2) for allz 6 Z, (At- A")-'P"z -, (AI- A)-Iz as n --*o_.

Then for aJl z 6 Z, S'(t)P'z _ S(t)z as n ---* 0% and the convergence is uniform on

bounded t-intervals.

We would like to Construct a convergent approximation scheme for the thermo-

viscoelastic system considered in Section 2.2. Nevertheless, for the approximation

scheme and convergence proof presented below, we restrict our attention to the ab-

stract viscoelastic system (equation (1.1)) for which the operator A is given by (2.2).

The convergence proof for the complete thermo-viscoelastic system involves a modifi-

cation of the proof we give here and can be found in the thesis [L]. This modification is

rather technical, and yet is a straight forward extension of the proof we present below.

Therefore, in order to conserve space we present only the proof for the viscoelastic

model. If we define the operator A0 : D( Ao) C_ X x Y _ X x Y by

V(Ao) = y

X

then we can write .,4 in the form

(x)
+

JY+ 0-_
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which suggestsa two-stageapproximationof A: We first approximate A0 by discretiz-

ing the spatial variable, typically by means of spline flmctions. We then approximate

Ow

0-7 by discretizing the delay variable. In this paper we will use an averaging scheme

for the second stage. We follow the construction given in [FI] except that we do not

require a uniform partitioning of the interval [-r, 0].

Let us now proceed with the first stage of the approximation. Define the bilinear

form ao(-,') on X x S by

O'0 Q(Z1)' (X2)) = O" (y' j-lx2) - O"(j-Ixl'y2)yl if2

where a is the bilinear form on S discussed in Section 2.3. Observe that for (xl E
\ yl J

and /_x2) XZ)(Ao) y2 6 x S,

\ Yl Y2
= (7 0 _ •

v Yl Y2

Now for each positive integer N, let X N and yN be finite dimensional subspaces of X

and Y with yg C_ S, and define W N = L_(-r, 0; xN). We define AN :X N x yN __+

X N x yN by restricting a0 to X N x yN; i.e.,

= O-o for X ×yN.

Now set Z N = X N x yN X I4/N and define A N : _)(,A N) C_ Z N .-+ Z N by

_D(A N) = X N X ym × H1R(_r,O; xN),

A N yN = yN )

W N 0 wN
JvN
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For each positive integer M partition the interval I-r, 0] into subintervals [tjM, tj__],M

j = 1,2,...,M, where

-_ = _."I< _-, <"'< _,_'< _Y= o.

We will say more later about how the t}u

(3.1)

are chosen. Set a M = t_,-t M forj =

1,2,...,M, let _y_t denote the characteristic function of [ty, t_l ) for j = 2,...,M,

and let X_ _ denote the characteristic function of[t_ _,0]. Let B_M(t), i = 0, 1,...,31

be the usual linear spline functions satisfying B_t(t2 J) = 5ij. Define the finite dimen-

sional subspaces W N'M and i_ N'M of If by

i }W = E a_'I)(.Y, gY _ xN '
i=1

" }m E M M= bi B i , bM E X N •
i----1

' (b_, - b_) X M whereDefine _)N,M : i_N,m _ wN,M by L)N'MwN'M = _1

M

w N'M "- _ biMNi M and b_ = O. Define the isomorphism i N'M • _N,M _ wN,M
i=l

by ig'Mw N'M = _, bYXY. Now define D N'M : W N'M --* W N'M by D N'M =

_N,M (iN, M) -1. To complete {he approximation, set Z N'M = X N x yN x W N'M,

and for zN'M= (xN,yN,wN'M)TE Z N'M, define

)0

jyN -b DN'Mw N'M
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M

If w N'M -" _ wM x M, then
i=1

AN,Mz:V,M= \ yN /

• N -- v-_ u-'i-I --_i M
.]y t _ AM Xi

i=1 _i

r'_-', go(s)&.where (go)y = j_,_

In order to prove convergence of this approximation scheme, we must impose con-

ditions upon the spaces X "_' and yN and upon the partitions of [-r,O]. Thus, we

make the following assumptions:

(A1) Let pN and py be the orthogonal projections of X and Y onto X N and yN

respectively. Then Pff _ Ix', and p N _ Iy where Ix and Iy are the identity

operators on X and Y, respectively.

(A2) For each positive integer M let 1-IM = {t) ¢ ]j = 0,1,...,M} be a partition of

[-r, 0] satisfying (3.1), and set h M = {1,2,...,M}. Then there exist positive

constants ¢1, e2 and C independent of M such that A M = A M U A M where

A_'= {jEA M a M_<rM-O+e')/2} •

c
If j E A_ _, then (g_)M _< _-I' and A M contains at most M 1-c2 elements of AM.

Furthermore, M M for j=2,3 .. M',andifjEA M , then-j-,(go)_' < (go)2'-,"J , '

1,2,...,j- 1 e aM.

EXAMPLE 3.2. Suppose t M -jr for j = 0,1,...,M.
M

r for all
Then a_ _ = 21---]
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j E A M , so (A2) is satisfied with q = l, e2, C > 0 arbitrary since A_ _ = 0 and

<_(go#'_,.

EXAMPLE 3.3. Let C = fo r go(s)ds, and suppose that the t_ _ are chosen so that

C
= -- - . . • _ I(g_)tt 3I for j = 1,9 31. Then it is easy to check that for q = }, e2 = -_ the

partition II M satisfies (A2) for all positive integers 3t.

\Ve will refer to these partitions as the "uniform mesh" and the "non-uniform mesh,"

respectively. The non-uniform mesh of Example 3.3 is the partition suggested by

Fabiano and Ito in [FI]. The convergence proof we give below is a modification of the

proof given in [FI]. The major difference is that we must handle each estimate in two

parts: one where the length of the interval is small (in this case our argument is the

same as that of Fabiano and Ito), and the other where the integral of g is small•

nN,M . .
Let r"z fleno_e the orthogonal projection of Z onto Z N'M. In order to apply

Theorem 3.1, we must show that "zpN'M s__ IZ as N, 31 -_ _. For z = (x; y, w) r E Z,

p;,Mz = (pff z, p_y rig, M ,_Tr"w w) , where _pN'Mwis the orthogonal projection of IV onto

W N'M Since we assume (A1) it is sufficient to show that pN,M s__ Iw.• .L W

LEMMA 3.4. For all h E W, pN'M I'"w ,o_h asN, 31-ooo.

PROOf: For w E W and t E [-r, 0], set wN(t) = Pffw(t), and define w N'M by

M

= rot e V(D
i=l

where the first term on the right-hand side tends to zero by the Dominated Con-
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vergence Theorem. We write the second term as Iw N- w N'M 1_, = S, + $2 where

Sj = E f'E' g_,(s) wN(s)-wN(t_J') 2Xds for j = 1,2. Following Fabiano and

Ito (but replacing r/M, the length of each interval using the uniform mesh, by

r/]ff(1+el)12) we get

s, _ IID=tUIIw.M._ M(,+c,)/=-_0asM_ _.

Now, for s E [-r, 0],

N 2
_" (') A"_ Ilw(_)ll_x-= z° z°' =xDtu({)d{ x = _ x/_)Dw({)d{

fo 1 /o_< _d_ go(_)IID_(_)II_,.dg <

Thus,

tu N tM 2

4_ IIDtuIl_, ['--' g_.(@z_<

lEA 2

4_c IIDtuIIw
g_(-r)M'_

-+ 0 as M ---+oz.

Hence, for E D(D2), ][w
_N,M II

w - "w tuIIw

2Ittu- tuN,.,,_

h pN'Mhl-- W W

N,M< )1.<
DN,M [ ,_ 1,--+ 0 as N,M + oo. Since D(D 2) is dense in 14" and * w -

--+ 0 as N,M --+ oo for all h E I47. |

Dom Theorem 2.5 we know that A E G(1,0). In order to show that .,4 N'M C=:G(1,0)

for all N, M, it is sufficient to show that .,4N'M is dissipative in Z N'M since Z N'M is
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finite dimensional. Let Z N'M = yN
wN,I_!

M

with W N'3t = __j wM_i 4. Then
i=1

N'M zN, M _ zN,M) z -_ cr o ix
N -1L _(go)#_/w/M"

i=1

yN

yN ]

fo { - _ - wMx_\

M
1

= _ _ Uo/;_'(w2,- w;",_;;')x
i=1

M

< _ Uo/;"

[
-<2;= a

1 Id'l _.,,.fuol;-'+',.Uo/,"'_ ,,.,
k ,_,+., _7/- Iw,,,,ll.,.,_ j<2 Li=I

ds

where we used the Cauchy-Schwarz Inequality and the inequality 2ab <_ a _ + b2, and

from (A2) the fact that (g,,)_;_l/a_M_ _< (go)M/@¢ for i = 1,2,... ,M- 1. Thus, we

have established the following result.

LEMMA 3.5. [f .A N'M iS as defined above, then .,4 N'M E G(1,0) for all N,M.

All that remains to be done in order to establish convergence is to show that (.kI-

.AN'M)-_pN'Mz _ (M -- A)-Iz for all z E Z. For Re,k > 0 and z = , consider
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the equation (AI - A)-lz = , or equivalently,

_z -jy = 9,

cgw

)_w - jy Os - h"

(3.2)

= ¢, (3.3)

(3.4)

From (3.4), w(s) = f:ea(s-¢)(jy + h(_))d_, and from (3.2), jy = Ax -V_, or y =

Aj-lx-j-lc2. Substituting into (3.3) and using oh as defined above and the fact that

fo Ae_(S__)d_ = 1 - e_s we obtain

( /° )A2j-lx- A aaz- 9_(s)(AI- D) -_ [9- h(s)]ds = g, + Aj-'_.
r

(3.5)

If we define A(A) = A2j -1

7:)(A),

= A2j -1 - aaA, then for x E

oA(A)x = ¢ + Aj-'_ - A g_(s)(AI - D)-'[cp - h(s)]ds.
r

,.N,M _NNow, let r z z = , and consider the equation (_I _ .AN,M)-a p_,NMz._
hN,M

yN . If we define AN: X N ---, yN by (ANxN,yN)r = --a (j-lxN,yN), then it
wN,M

is easy to see that AN yN = ANxN yN E X N X . Thus, we have
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the equations

)_X N -- jyN = _N, (3.6)

_yN__ A N x N + L_(ga) i i ) "- _)N,
i=l

(3.7)

),w_i_ _ jyg (w_ 1 -- w_i ') = h_ _ for i = 1,2,... ,M, (3.8)

M M

where w N'M = _ wiM_'_ l and h N'AI _ _ h_lX_ I. From (3.8),

i=I i=l

1 )w;:'- !w-

or

w_ l = (1 + a_'A)-' [wiM, + @' (jyN + hi_,)] for i= 1,2,...,M,

where woM=0. By induction, w_'= k=l_ [ l!It=k(1 +@'A) -1] a'_' (jyN+ hM). From

(3.6), jyN = Ax N _ _N which implies yN = Aj-lx N _ j-lq_N. Substituting into (3.7)

we obtain

_2j-lxN-- A N x y + A _(9_) M (1 + a_'A) -1 c_'x N
i=1 k=l l=k

X--", ,MAN (1 O_J"A) -'= oN + Aj-I_pN _ 2_,tg,_,b + c_M (_pN _ hM). (3.9)
i=1 k=l l=k

i
M -1

o_'r= 1- I-I (1 +% _) .
k=l

Define

AN'M(A) = A_j -' -- A N 1 + _(g_,)_" 1 - (1 + oMA) -' .
i=1 k=l

M 1 f_o rThen, since _, (go)i _ 9(s)ds 1,
i=l Ot r

[/° ]AN'M(._) = A:j -1- J-A N r + 9(s)eM(),,s)ds (3.10)
0 r
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where

i=1 k=l

M

Let (AI- DN'M) -' (_Y _ aN,M) = E (iMx'ff • Then
i=1

M M [_,N_ aN,.= (_I- DN'')_ _Y_Y=_2 _Y- --
i=l i=l

1 (_2,-_Y) for i = 1,2, M.which implies c2N - hiM = A_M - 7 ...,

i

(1 + AtoM) -I [(M 1 + aft (_N _ h;_t)], or, by induction,

? ]_y= _ (1+ a#)-' o2' (_,N_h2').
k=l l=k

0 M M
Now, eo(_)E _YxY= E(9o)Y_Y,so

r i=1 i=1

/09o(,) (a_- DN") -' (_,N_ aN,,) e_

[ ]
i=1 k=l l=k

Therefore, from (3.9), (3.10) and (3.11) we obtain

1 ]
Thus, _ff =

(3.11)

0AN,M(A)X N = cN + Aj-_N _ A N go(s)(A1- DN'M) -' (:N _ aN,M) ds. (3.12)

In order to complete the proof of convergence, we must show that x n ---* x, yN _ y

and W N'M ..--4 W &S N, M ---, oz. First we need the following lemmas.

LEMMA 3.6.

PROOF: Let w = (tl - D)-_h and W N'M -_ (,_1- DN'M) -1 p_,N Mh.

(iN'M)-lwN'M; and take _N,M = fs pN,M(Dw)d(" It now follows that

For A > O, (A1 - DN'M) -1 *I)N'MI_IV,_ --, (11 - D)-_h for all h E W.

Set _lJ N'M :

(3.13)

31



Now,

]w-- iN'Mff_N'M IW <- W-- _) m'M W + ff_N'M -- iN'M_N'MII w

where

I1;pN,M(Dw)< -- Dw - _ w
- 2

M

pN,M ( Dw __,,_,jLemma 3.4. If we set , w t J = X--'/___,i_t_,i I, then we get_. _

i=1

_0 asN, M_ c_

M ft._L,= _, t1.,.(_-¢')_ d_= si +&.
i=1 "]tim

To estimate the term S1 we again follow Fabiano and Ito (replacing the term r/M

r 2

by r/MO+C,)/2) to get S_ _< 3i_+e--------_ ttD_II,_,--, 0 as M --, _. Define the norm ]ll[_

PV by IIwlt_ = jo Nw(s)ll._. ds. Then ] P,_'M(Dtv)t I = ZiJ_, ds
Oil

7"

M t_'l(;" X ds = E " ¢YlI_,,-Vo,-_• w,
"= Jt t'f i=1

o 1 L ° 1llwll_= IIw(_)ll._.ds < -- go(S) I1_'(_)11_,,d_ - I1_11_
, - go(-_) , go(-_) ,

and so, for all j,

2 Pw (Dw)t, < --o_j X--

1 2 1
< --llD_llw •

w - go(-_)

Thus, fors E [t2"t2!l)' 1_2f"]2X(_-'2')_ -<(49_1_2'1_ -< g_(__)_IIDwllw.

Hence,

&_<_ _ liDwlibf<_'go(_)ds <_
IID_II_,,c

go(-r)M e'
_0as M_ee,
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and so [w- iN'M_N'M l ., --* 0 as N,M _ ¢_. Thus, from (3.13)it follows that

t1__'_'- _"_'^' I.,-_ o_sN,M-__. Therefore,

+ ] iN'M_ON'M -- wN'M W _ 0 as N, 3I --* oo.
|

fLEMMA 3.7. For A > O, 9_,(s) e as - eM(A,s)] da + 0 as M --* ec.
T

PROOF: By definition of eM(A,s),

o ^_ t,_[_ eaS f-i Ij_ go(_)t_'-_^'(*,')ld_=E [ _o(_) - (1.-t-ci,)'/_)-I ds
, i=l arm j=l

2C

= Sa + $2. Let e > 0, and choose Mo large enough that if M _> M0, then 5-_ < e,

e (rA)2e_a < For /1I > JI0,
e x(_/MO+q)/2) -- 1 < 7, and 2Me, _.

2C

9o(_)& _<_ < 6.

Let a_'= {1,2,...,n} and suppose s E [t_',0]. Then for some / E A_',t M < s < ti___1

(which implies that e xt,u < eas <_ e atZ', so O _< eas - e aty <_ ea'y eaSY-1 < _.

But, ty = - E_:a @' which implies

i

e_'e- H (_+<4"_)-'
./--1

i

: 12I e-a_'_ - 12I(1+ _A)

j=l /=l

-1

lI-- (:+<","<_)- 1-Ie_'<'_
j=l j=l

act M

Now, e , = (1 + ActM) + -leA<' (A_<) 2 for some _ between 0 and MO'j .
2
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(1 + Aa M) and bj = _e )'e, (A@¢) '. Then

(1+ _2'_)- e_°r = a, - I-[(a-/+b,).
j=l ./=1 -/=1

i i i i j-1

By induction, l-[ a.i - 17 (aj + b.i) = - _ b_ I-[ (ak + bk) 1-i a,. Thus,
j=l j=l j=l k=j+l l=1

112"I (1+ o_)'A)- 12I "_':'Me,
-/=1 j=l

i i ./-1
1 :_

=Z5 e e,(A@') = H ea_H(1 +aMA)
j=l k=j+l /=1

j=l

,Xr _ 2 e_(tr)= e
<_ 1eAT._ M . M(1-4-g_)/= j - 211I e_ < -_,

since e a_j i 2_c_M _l..ii eAoM iH _ _ (_+oVA)_< 17
k=j+l /=1 k=j+l

e:_°_ e_P = e_'Y <_ e:_. Hence,
1=1

I]+ _"_- [I (_+ '_)-_
j=l

d,s

We are now ready to prove the main result of this section.

AN'MIr-)N'Itl S(_)z as N, 11I -+ o% uniformly onTHEOREM 3.8. For al] z E Z, e r z z ---*

bounded t-intervals.

PROOF: As remarked above, we have only to establish (H2) of Theorem 3.1. Fur-

thermore, it is sufficient to show that x N ---+ x. If we define the bilinear forms

p(.,.) on X by p(x_,x_) = A2(j-lxl,j-ax2) Y + aa (xl,X2)x (it is easy to verify

that p(x_,x2) = (A(.X)xI,X2}y if x] e D(A)), and /aM(., .) on X N by pM(x_,x2) =
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(AN'M(A)xl,j-lx2)V, then for Xl,X2 E X N,

and forxEX N,

#;"(x,_) = ; I j-'xl _,+ _;,Ilxll_..• (3.15)

By (3.5), we have for all u C X,

p(x,u) = (¢ + Aj -_,j-'u)v

+a j-' 9o(s)(M-D (_-h(s))ds,j ,
r

and by (3.12), for all u N E X N,

#M(xN, uN ) = (_,n + Aj-,_N,j-,uN)y

(/o )+ _r j-1 go(s) (AI - DN'M) -' (_g _ hN,M(s)) ds,j-lu n .

Let _N = pNx. Then, taking u = u n = "_N _ xN in the above two equations, we get

#M('_N __ zN,*_N __ Z N)

___[_.(_N _ x._N_ _N)I+ I/%._N _ xN)_ _(_._ _ _N)[

+ I1_'- eNIIyIIJ-'II-II;" - x_ll_+ ,_II./-'II_ I1_-_"llx liT"- J"ll,,

+ flgo(s)](M-D)-'(_-h)

- (_- DN")-'P_'M(_- h)Ida. I_N- _NIx"

1( )- , + f°__g(s)eM(A,s)ds then by Lemma 3.7, af > 0 for M largeIf we set aM= a '

enough. Estimating the right-hand side of the above equation and using (3.14) and
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N 2 __ ]AM(_, N "_N Z Nfrom (3.15) the fact that eta t_ N- x [x < - x N, - ), we get

I[ "_N -- xN X

< -- ;lj-'l _+ o_')I_ _ - _llx + go(_)_- _'(A,_)I ll_lb
o/A

+ l j-1 . ¢ _ cN Y + A 112-1 2. t'," - ,,,N.,,+ go(s)ds

_sN,M -__ byL_mm_s3.6_nd3.7,soI1_-zNtlx-_0_ N,M-_o_.

\Ve are interested in applying this approximation scheme to the optimal LQR prob-

lem, but it is well known that convergence of the forward problem (i.e., Theorem

3.8) is not sufficient to ensure convergence of the gain functionals (see [G], [BIP]).

Convergence of the adjoint semigroups as well as other properties (uniform stabiliz-

ability, etc.) play a central role in the development of convergent methods for LQR

problems. If g(.) E L2(-r, 0) then Z can be re-normed by using the weight e(s) - 1

in place of g(s). If Ze denotes the resulting equivalent space, one can establish the

following adjoint convergence (see [M] for a proof).

THEOREM 3.9. If g(s) 6 L2(-r, 0), then for each z E Z,_,

rANMI"t N,hf

et ' I p_' z _ S'(t)z as N, M _ c_.

Moreover, this convergence is uniform on bounded t-intervals.

Recently, K. Ito has announced [I]a proof of this result that does not require the

additional assumption that g(') E L2(-r, 0). In general, the question of preservation

36



of stabilizability uniformly under theseapproximations is not answered.However,for

certain specialformsof 9(') and for problems with additional damping terms (Kelvin-

Voigt), one can establish uniform stabilizability. More will be said about this problem

in the next section.

4. Numerical Results. We turn now to an optimal control problem governed by

the basic thermo-elastic equations with viscoelastic and Kelvin-Voigt damping terms.

For a rod of length 1 the equations of motion become

r

-o(3A + (4.1)

0 z) = 02
pc-_O(t, a--_z20(t,x) - Ooa(3A + 2#) O-_xY(t,x ) (4.2)

03 x) provides Kelvin-Voigt damping. If
where for 0 < 3 < +oc, the term '30-)--_fiz2y(t ,

= 0 and g(s) = 0, then (4.1) - (4.2) become the classical equations of thermo-

elasticity. If 9(s) 7_ 0 satisifies Hypothesis 2.3, then the integral term provides a type

of "viscoelastic damping" to the system.

Gibson, Rosen and Tau [GRT] considered the problem with g(s) =_ 0 and with

Dirichlet boundary conditions on displacement and Neumann boundary conditions

on the temperature. In this case it can be shown that the thermo-elastic model (i.e.,

'3 = 0 and 9(s) - 0) has zero as an exponentially stable equilibrium, provided of

course that one subtracts out the constant temperature distribution. Moreover, the

elastic and thermal modes decouple, and one can use modal expansions in analyzing
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this system. Therefore, if/3 = 0 and 9(s) = 0, then (4.1) - (4.2) with Dirichlet-

Neumann boundary conditions is exponentially stabilizable (again, after "subtract-

ing" the constant temperature states), and the standard LQR control problem has a

unique solution. The same clearly holds for the corresponding systems with fl # 0

and g(s) # O.

We shall consider the more complex problem governed by (4.1) - (4.2) with Dirichlet

boundary conditions on displacement and temperature. In particular, we impose the

boundary conditions

y(t,0) = y(t, 1) = 0 = 0(t,0) = O(t,1). (4.3)

If/3 > 0, then (4.1) - (4.3) is exponentially stable. If 13 = 0 and g(s) satisfies the

basic assumptions in Section 2 with

¢0 = (A + 2/1) + _ g(s)ds > 0, (4.4)
7"

then it is known that (4.1) - (4.3) has zero as a globally asymptotically stable equi-

librium (see [W,pp. 203-210]). It is important to observe that, in general, results of

this type do not extend to problems in two or more space dimensions. If i3 = 0 then

it is still not known if (4.1) - (4.3) is exponentially stable. There are positive results

for infinite delay problems with completely monotone kernels g(.) (see [HW]).

Recently Hanson [H] has shown that for /3 = 0 and g(s) = O, the open loop

eigenvalues of (4.1) - (4.2) are bounded away from the imaginary axis. However, the

eigenfunctions for this problem do not form a Riesz basis for the natural state space,
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and hencethe questionof exponential stability remainsunresolved.

Thesetheoretical issuescanhaveconsiderableimpact on computational algorithms

and needto be addressedin order to complete the convergencetheory for control

applications. Someprogresshasbeenmade for the thermo-viscoelasticproblem with

kernelsof the form

9(s) = (4.5)

for q > 0, p > 0 (see [L]), although no results exist for the classical thermo-elastic

model /3 = 0, 9(s) = 0. In summary, if /3 > 0 or g(.) has the form (4.5) with

(4.4) satisfied, then (4.1) - (4.3) is exponentially stable (hence stabilizable), and if

/3 = 0 = g(s), it is not known if (4.1) - (4.3) is stabilizable.

We shall present several numerical experiments for LQR control of (4.1) - (4.3)

with various values of/3 and b when 9(') is given by (4.5). The numerical constants

are chosen to be the same as used in [GRT] for an aluminum rod of length 1. In

particular,

p=9.82x 10 -2 ,

/_ = 1.11 x 10 -1 ,

c=5.40x10 -I ,

00 = 68,

p=l,

= 2.06 x 10 -1,

a=1.29x 10 -a,

= 7.02 x 10 -r,

q= 30,

r=l.

Observe that for these values, the constant 3' = a(3_+2/,) takes the value 1.085 x 10 -a,

and hence the coupling between (2.1) - (2.2) is "small." Note also that the kernel
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(4.5) has a weak singularity at s = 0. We selected constants /3 = 1.8 x 10 -7 and

b = 6.0 × 104 so that the first elastic mode has open-loop damping of the same order

of magnitude as the classical thermo-elastic model. The control input function b(x)

is given by

f 1,

b(x)=
( O,

and is the same as used in [GRT].

.4 __<x < .435;

elsewhere,

The LQR problem for the system (4.1) - (4.3) is to choose a control function uo(t)

j_O _
,.7 = [g2(t) + u_(t)] dt (4.6)

i

to minimize

i

=

r

where $(t) is defined by

{/o[ ] /o[ x ] /o'' o _ a _ 1 [o(t,x)f dx
g(t) = e giy(t,x) dx + ,o y(_,x) d_ + Vo

(4.7)

and y(t,x), O(t,x) is the solution to (4.1) - (4.3) with initial data

y(o,x) = yo(z),%(o,z) = vo(x),o(o,x)= To(x)

y(O,z)- y(_,_) = wo(_,x).
(4.8)

For g(s) defined by (4.5) and b > 0 such that (4.4) holds, there exists a unique

optimal control law in feedback form

/0 /o' d . 0 ' 1 K3(x)O(t,x)dxuo(t) = eo _xI(,a(x)--_xY(t,x)dx + p K:(x) y(t,x)dx +-_o

1 o 1

b f__foo [OIf4(s'x)] [Oy(s'z,- 0
]

Nu(t + _,x)j g(,)axa,. (4.9)
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If g(s) = 0 and fl > 0, then again there exists a unique optimal control law in

feedback form (4.9) with g(s) = 0 = I(4(s,x). If _5 = 0 and g(s) = 0, then the

most one can say is that if an optimal control exists, then it will have the form (4.9)

with g(s) = 0 = K4(s,x). The existence of the optimal control has not yet been

established. We had hoped that the numerical results presented below would shed

some light on this question. However, as will become evident from these numerical

experiments, we seem to have raised more questions than we have answered.

The objective of the computational scheme is to produce numerical approximations

of the optimal functional gains KI(-), K2('), I(a(') and K4(',-). In particular, the

general idea is to introduce an approximation method (such as in Section 3), and

then to use this method to compute approximating (sub-optimal) gains K_(.), KN(-),

• 3,r
KN(.) and I,/4 (.,.), The basic questions are i) Do the optimal gains exist? and ii)

Does the particular approximation scheme lead to convergence of the sub-optimal

gains; i.e., does If_(-) --_ If/(-), i= 1,2,3,4 as N _ _?

The computational results presented below are based on the numerical approxima-

tion scheme presented in Section 3. We used the non-uniform mesh as described by

Example 3.3 for the thermo-viscoelastic model. In particular, all runs presented below

were based on M = 8 subdivisions of [-1,0], and the corresponding approximating

finite dimensional system becomes

_N(t) = .AN,SzN(t) + 13Y'Su(t) (4.10)
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where/3N,8 N 8 R 1= P_;' /3 and/3 • ---, Z is defined by Bu = (0, b(x)u, O, O) T. The results

are the same for M = 16 sub-divisions of [-1,0] (a nice feature of the non-uniform

mesh algorithm).

In the cases where i) holds, Theorems 3.8 and 3.9 imply convergence of the func-

tional gains provided one can establish that this scheme preserves stabilizability uni-

formly in N (see [G]). For the thermo-viscoelastic model with g(.) given by (4.5) and

the thermo-elastic model with fl > 0, preservation of stabilizability can be shown.

In order to see the effect of the damping models on the open-loop system, in Figure

1 we plot the open-loop poles for the first 8 elastic modes using only thermal damping

(i.e., fl = 0; 9(s) = 0), thermo-viscoelastic damping (fl O, g(s) given by (4.5) and

b = 6.0 X 10 4) and Kelvin-Voigt damping (fl = 1.8 x 10-r), respectively. Observe

that the damping is extremely small in all three cases. On the other hand, Table 1

shows that at the higher frequencies the damping provided by the thermo-viscoelastic

model is an order of magnitude more than the thermo-elastic model, and the damping

predicted by the Kelvin-V'oigt model is two orders of magnitude greater than the

thermo-elastic model.
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Elastic
Mode

1

2

3

4

5

6

7

8

9

10

15

20

Thermo-Elastic Therrno-Viscoelastic
b = 6.0 x 10 a

Kelvin-Voigt

/3= 1.Sx 10 -r

-0.0000054 + 6.58i

-0.0000060 + 13.17i

-0.0000071 + 19.79i

-0.0000086 + 26.47i

-0.0000106 + 33.20i

-0.0000129 + 40.02i

-0.0000157 + 46.93i

-0.0000189 + 53.95i

-0.0000224 + 61.10i

-0.0000263 + 68.39i

-0.0000491 + 107.5i

-0.0000662 + 151.5i

-0.0000091 + 6.58i

-0.0000184 + 13.17i

-0.0000325 + 19.79i

-0.0000501 + 26.47i

-0.0000699 + 33.20i

-0.0000905 + 40.02i

-0.0001113 + 46.93i

-0.0001317 + 53.95i

-0.0001514 + 61.10i

-0.0001705 + 68.39i

-0.0002565 + 107.5i

-0.0003257 + 151.5i

-0.0000093 + 6.58i

-0.0000216 + 13.17i

-0.0000423 + 19.79/

-0.0000715 + 26.47i

-0.0001095 + 33.20i

-0.0001566 + 40.02i

-0.0002133 + 46.93i

-0.0002800 + 53.95i

-0.0003574 + 61.10i

-0.0004460 + 68.39i

-0.0010866 + 107.5i

-0.0021294 + 151.5i

TABLE 1. OPEN LOOP POLES; SMALL DAMPING

We also considered cases where b = 6.0 x 10 2 , b = 6.0 x 10 _ and /3 = 1.8 x 10 -s,

/3 = 1.8 x 10 .4 . The models with /3 = 0 and b = 6.0 x 102 and /3 = 1.8 x 10 -4,

g(s) = 0 show considerable increases in open-loop damping (especially at the higher

modes) as illustrated in Table 2.
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Elastic
Mode

1

2

3

4

5

6

7

8

9

I0

15

20

Thermo-Elastic
/3= o

-0.0000054 + 6.58i

-0.0000060 + 13.17i

-0.0000071 + 19.79i

"0_0000086 + 26.47i

-0.0000106 + 33.20i

-0.0000129 + 40.02i

-0.0000157 + 46.93i

-0.0000189 + 53.95i

-0.0000224 + 61.10i

-0.0000263 + 68.39i

-0.0000491 + 107.5i

-0.0000662 + 151.5i

TABLE 2.

Thermo-Viscoelastic

b = 6.0 × 102
Kelvin-Voigt

/3=1.8x 10 -5

-0.0003812 + 6.57i

-0.0012388 + 13.16i

-0.0025453 + 19.78i

-0.0041601 + 26.45i

"0.0059423 + 33.19i

-0.0077757 + 40.00i

-0.0095789 + 46.91i

-0.0113034 + 53.93i

-0.0129269 + 61.08i

-0.0144449 + 68.37i

-0.0207916 + 107.5i

-0.0260228 + 151.5i

OPEN LOOP POLES; MEDIUM

-0.0003934 + 6.58i

-0.0015617 + 13.17/

-0.0035214 + 19.79i

-0.0062913 + 26.47i

-010098982 + 33.20i

-0.0143768 + 40.02i

-0.0197699 + 46.93i

-0.0261290 + 53.95i

-0.0335142 + 61.10i

-0.0419944 + 68.39i

-0.1038004 + 107.5i

-0.2063817 + 151.5i

DAMPING

The LQR problem for the approximating system (4.10) is solved (by Potter's

method) and approximating functional gains KN(-), KN(.), KN(.) and KN(., .) are

constructed by the standard Galerkin scheme (see [M] for details). Convergence of

these sub-optimal functional gains as N -* oc to the optimal gains can be established

for/3 > 0 and g(s) = 0 by methods similar to those in [G]. If g(s) is defined by (4.5),

then this convergence can be established by a modification of Ito's recent results [I].

Nothing is known about the classical thermo-elastic problem. We treat this problem

numerically.

Example 4.1. In this problem we set g(s) = 0 =/3 and compute the gains KN(.),

i

=

=
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Ix'N(.) and KN(-). Note that the finite dimensional system (4.10)is exponentially

stable (all open-loop poles are in the left half plane) so that these sub-optimal func-

tional gains do exist. Figures 2, 3 and 4 contain the plots of KN(-), i = 1,2, 3 for

N = 24, 28, 32 and 36. Although these plots are similar to those found in [GRT],

and for the boundary conditions in [GRT] one can prove convergence of the gains,

it is not clear from Figures 3 - 4 that these gains are converging. We will return to

this issue later.

Example 4.2. In this problem we consider the thermo-viscoelastic problem defined

by/3 = 0 and b= 6.0 x 101 , b= 6.0x 102 . Figures 5, 6 and 7 contain the plots of

Kin(.),i = 1,2,3 for N =24,28,32and 36 where b= 6.0 x 101 . Figures 8, 9and

10 contain the same plots for b = 6.0 x 102. Observe three important features: i)

For b = 6.0 x 101 the system is more heavily damped than for b = 6.0 x 102; ii) the

functional gains for the case b = 6.0 x 101 are smoother than for b = 6.0 x 102; and

iii) the convergence of the functional gains is faster in the problem with the most

open-loop damping. The plots of I(_(., .) for b = 6.0 x 101 and N = 24, 28, 32 and

36 are shown in Figures 11 - 14. Note that these gains converge rather rapidly. This

was typical of all the thermo-viscoelastic runs.

Example 4.3. In this problem we consider only the thermo-elastic model with

Kelvin-Voigt damping so that g(s) = 0 and /3 = 1.8 x 10 -4 and /3 = 1.8 x 10 -5 .

K i (.), i = 1,2,3 for N - 24, 28, 32 and 36Figures 15, 16 and 17 contain the plots of N
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for/3 = 1.8 x 10 -4, and Figures 18, 19 and 20 show the same plots for fl = 1.8 x 10 -5.

Observe that as in Example 4.2 above, the damping affects the smoothness and rate of

convergence of the functional gains. Also note that when fl = 1.8 x 10 -s the first elas-

tic mode has the same damping factor (i.e., open-loop pole is -0.00039 + 6.58 0 as the

problem in Example 4.2 with b = 6.0 x 102 (i.e., open-loop pole is -0.00038 + 6.58 0,

Figures 21, 22 and 23 contain the plots of 1(32(-) for the thermo-elastic and thermo-

viscoelastic models and the thernlo-elastic model with Kelvin-Voigt damping for var-

ious values of b and ft. The functional gains for the thermo-viscoelastic problem

"converge" to the functional gains for the thermo-elastic problem as b _ oo. The

same convergence applies as the I<elvin-Voigt parameter /3 --4 0. As illustrated in

Figure 23, the functional gain I(_2(-) computed by using the thermo-elastic model is

the same as the gain computed by using the same model with I<elvin-Voigt damping

parameter fl = 1.8 x 10 -7. Likewise, if b = 6.0 x 10 4 in the thermo-viscoelastic model,

then the functional gain K_2(.) is also identical to the gain computed by using the

thermo-elastic model. This "basic" observation applies to K32(.) for i = 1,2, 3 and for

1{74(.) also. In particular, as shown in Figure 24, the functional gain Ii_4(.) computed

from the thermo-elastic model is remarkably close to the functional gain computed by

adding Kelvin-Voigt damping. Although convergence of the functional gains for the

thermo-elastic model with Kelvin-Voigt damping is assured by theory, Figures 23 and

24 illustrate that this convergence can be extremely slow if the damping parameter

fl is small.
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Figures 23 and 24 also raise the possibility that even in the thermo-elastic problem

(no structural damping) where there is no proof of convergence, the gains might

converge if N is sufficiently large. The jagged nature of KN(.) occurs because of the

small damping. Moreover, comparing the open-loop and closed-loop poles, one sees

that the optimal feedback law introduces considerable damping at all frequencies.

Figure 25 compares the first S open-loop poles (+) to the closed-loop poles (*) for

the thermo-elastic model. It is interesting to note that the same pattern holds for

all of the higher poles (see Table 3 below), and the thermal damping alone does not

appear to be a major aid in controlling the higher modes.

Mode Open-Loop Closed-Loop

1 -0.0000054 + 6.58i

2 -0.0000060 + 13.17i

3 -0.0000071 + 19.79i

4 -0.0000086 + 26.47i

5 -0.0000106 + 33.20i

6 -0.0000129 + 40.02i

7 -0.0000157 + 46.93i

S -0.0000189 + 53.95i

9 -0.0000224 + 61.10i

10 -0.0000263 + 68.39i

15 -0.0000'191 + 107.5i

20 -0.0000662 + 151.5i

TABLE 3.

-0.1078901 + 6.58i

-0.0552142 + 13.17i

-0.0792251 + 19.79i

-0.0953868 + 26.47i

-0.0298920 + 33.20i

-0.1097076 + 40.02i

-0.0264249 + 46.93i

-0.09'16583 + 53.95i

-0.0742450 + 61.10i

-0.0549855 + 68.39i

-0.0707290 + 107.5i

-0.0731157 + 151.5i

OPEN-LOOP VS. CLOSED-LOOP POLES

THERMO-ELASTIC MODEL
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As illustrated by Figures 26 and 27, the first S closed-loop poles for the moderately

damped (I£eivin-Voigt) thermo-elastic and the thernlo-viscoelastic models are essen-

tially the same as the cQrresponding closed-loop poles for the thermo-elastic model.

In view of these numerical results, we first conjectured that although no theoretical

results exist to prove the existence of the optimal feedback gain for the classical

thermo-elastic model (with boundary conditions (4.3)), existence and convergence of

the suboptimal gains do hold. Since the damping for the realistic model is so small,

the numerical evidence provided by the previous plots is not strong. In order to test

this conjecture we investigated the convergence of the gains for the problem with

"artificial" parameters. In particular, we considered the equations in dimensionalless

form

02 02 O-EOu(t,_)= -gT_yCt,_)- ._ o(t,_) + b(_)_,(t)
0 02 02

c2--0(_, x) x)8i °(t'x) = 0_2 - c2"_O-i-_Y(_'

with b(x) as above and c 2 = 7 = 1.0. The uncontrolled system has considerable damp-

ing. The first two elastic modes have eigenvalues -.0939 + 3.15i and -.4066 + 6.47i,

respectively. The functional gains for this set of parameters are slightly smoother

than the corresponding gains for the aluminum rod. Figures 28, 29 and 30 show the

"convergence" of these gains for N = 24, 28,32 and 36. It appears that the scheme

may produce convergent gains (at least for K N (.) and I( N (.)); however, the behaviour

of KN(.) is not clear-cut. Based on our numerical experience, we do conjecture that

48



the classical thermo-elastic model with Dirichlet boundary conditions is in fact stabi-

lizab]e. However, we also conjecture that the computational scheme does not produce

convergent gains (we believe that this scheme does not preserve stabilizability uni-

formly). We have not been able to provide proofs of these conjectures, and we leave

them as open problems.
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